
Faculty of Computers and Artificial Intelligence

CS433: Internet of Things (IoT)

 Page 1 of 14

Lab no 07 Part_01 –AWS IoT Shadows

The purpose of this lab is to be familiar with AWS shadows in IoT.
In this lab, we will interact with the Thing Shadow of a car.

Parts: -

1. Download the new code and start car1.

2. Change the status of the lights while car 1 is connected.

3. Change the status of the lights while car 1 is disconnected.

4. Delete the resources created in this exercise.

Required Resources

• 1 PC with Internet access.

• Account in AWS Management Console.

Lab no 07 part1 –AWS IoT Shadows

 Page 2 of 14

In this exercise, you will interact with the Thing Shadow of car1. The car has lights that can be turned on

and off. You could directly run a server on car1 itself waiting for a REST API call, however that won't be

optimized for battery. Instead, you will use AWS IoT as the channel for the interaction between the input

of the lights to be turned on/off and the car.

You could use a similar IoT Topic like the one you used in lab 6 part 1, but the car would have to be

connected at all times as messages in IoT are ephemeral. If the car wasn't connected at the time, you would

send an input to change the light status, then the car would never know. Being connected always isn't great

for a Thing that doesn't have much power or that wants to minimize power consumption.

Instead, you will use an IoT Thing Shadow. As you saw in the lecture, a Shadow represents the state of

your car inside the IoT service. You can interact with the Shadow and when the car connects back to the

Shadow, it will see that the state has changed and will act upon it. Thus, decoupling the front end (via a

browser) and the back end (car1). It's still using IoT Topics for the interaction so any MQTT client would

work to interact with that Thing Shadow.

You will first download the new code for car1 and start it. Then you will use the AWS IoT MQTT Client

in the AWS Management Console to publish a new Desired State for the car turning its lights on/off.

Finally, you will disconnect car1 to see what happens when you modify the State of the car and it's

disconnected. Does it keep its status? What if the car reconnects after you modified the Thing Shadow?

You will answer these questions in this exercise.

The diagram below shows the resources and data flow that you will create in this exercise.

Lab no 07 part1 –AWS IoT Shadows

 Page 3 of 14

1. Download the new code and start car1

In this section, you will make sure that car1's Thing Shadow is empty in case you

modified it during outside of the exercises. You will then connect to your Cloud9

environment, download the new code for car1 and start it. Since this will be the first

time you start car1, it will set itself to its defaults of having its lights turned off and

report that state to AWS IoT.

1.1 Start Cloud9

Your Cloud9 environment may have shut down at this point as it's supposed to

automatically shut down after 30 minutes. To restart it, follow these steps:

1. In the AWS Management Console, click Services, and then click Cloud9 to go

to the Cloud9 console.

2. You should see a list of environments. If you don't, click on the hamburger menu

icon (the three parallel lines) near the top left of the screen and click on Your

environments.

3. Click the Open IDE button in the IoTOnAWS card. If you don't see it, make sure

you are in the same Region as the one you used in lab 6 part 1. It should

be Frankfurt, Ireland, N. Virginia, Ohio, Oregon or Tokyo.

4. It may take a minute for your environment to start.

1.2 Set the initial state of car1

1. In the AWS Management Console, click Services, and then click IoT Core to

go to the IoT console.

2. Expand Manage and click Things in the left menu.

3. Click on car1.

4. Click on Shadows.

5. Click the 3 dots next to Classic Shadow, select Remove shadow and

click Remove shadow(s).

This will ensure that your Shadow is completely empty before we start using it. It

should say: No shadow found for this thing.

Lab no 07 part1 –AWS IoT Shadows

 Page 4 of 14

1.3 Download the new code and start car1

1. Download the application code in the car1 folder by running the following

commands in your AWS Cloud9 terminal:

cd ~/environment/car1

wget https://aws-tc-largeobjects.s3.amazonaws.com/OTP-AWS_D5-2019/v1.0/code/exerc

ise-2.2.js

2. Start car1 by executing the following command.

node exercise-2.2.js

You should see the following if you didn't modify the Thing Shadow outside of the

exercises.

The car1 has been registered.

Sending initial get to set the light state.

Received the initial get data.

No lights state found, setting state to defaults.

My lights are off

 __/ __

| _ _ `-.

'-(_)---(_)--'

Feel free to look at the code to understand what was done. In summary, the first

step is to register to the Thing Shadow topics. Once registered, which also includes

the connection to AWS IoT, an initial get request is sent. This isn't a blocking

request, and it will call the status event when a reply is sent back by AWS IoT.

Car1's Shadow should be empty as it has never been interacted with which is what

you see as reported: No lights state found. An initial state of having its lights off is

reported to AWS IoT. It then shows beautiful ASCII art of a car with its lights off.

1. In the AWS Management Console, click Services, and then click IoT Core.

2. Expand Manage, click Things in the left menu.

3. Click on car1.

4. Click on Shadows on the left side.

Lab no 07 part1 –AWS IoT Shadows

 Page 5 of 14

5. Click on Classic Shadow.

6. You should see that the Shadow state has been reported by the car with its

lights off:

{

 "reported": {

 "lights": false

 }

}

Lab no 07 part1 –AWS IoT Shadows

 Page 6 of 14

2. Change the status of the lights while car1 is connected

In this section, you will connect to AWS IoT using the AWS IoT MQTT Client and send

an update to turn on the lights of the car. You will look at different IoT Shadow Topics

specific to car1 to understand what is going on with the code.

1. In the AWS Management Console, click Services, and then click IoT Core to

go to the IoT console.

2. Click Test in the left menu. It will open an AWS IoT MQTT Client where you

can interact with any Topic that you have access to. This Client will

automatically connect to your IoT Endpoint.

3. Under Subscribe topic, enter $aws/things/car1/shadow/update/documents.

4. Click Subscribe to topic. You have now subscribed to car1's Thing Shadow

documents topic. AWS IoT publishes a state document to this topic whenever

an update to the shadow is successfully performed. It is useful for

understanding the different states that are changing.

5. Click the Subscribe to a topic blue link on the left of this page's section.

6. Under Subscribe topic, enter $aws/things/car1/shadow/update/delta.

7. Click Subscribe to topic. You have now subscribed to car1's Thing Shadow

delta topic. The Device Shadow service sends messages to this topic when a

difference is detected between the reported and desired states of a shadow.

8. Click the Publish to a topic blue link on the left of this page's section. This

will not close the subscriptions you made in the last few steps, it allows you to

subscribe and publish to multiple topics.

9. Under the Publish section, in the white text box where Specify a topic to

publish to, e.g. myTopic/1 is written, enter $aws/things/car1/shadow/update.

This will set the topic to car1's Thing Shadow special update topic. This is how

you need to interact with the Thing Shadow if you use the topics directly.

10. Under the text box of the previous step where there is currently a

"message": "Hello from AWS IoT console", replace the entire content with the

following. This says that you have a desire for the lights to be set to true by

setting the state to desired and passing all the attributes that you want to set.

Lab no 07 part1 –AWS IoT Shadows

 Page 7 of 14

{

 "state": {

 "desired": {

 "lights": true

 }

 }

}

11. Click Publish to Topic. What happens is that the desired state is sent to

AWS IoT which then generates a delta state between the

originally reported state from the previous section and the new desired state

that you just sent.

12. Go back to the Cloud9 terminal and you should see a new beautiful

ASCII art with lights turned on like the following:

My lights are on

 __/ __

| _ _ `-.///

'-(_)---(_)--'\\\

Reporting my new state.

What just happened is that the code is subscribed to the delta topic of car1's Thing

Shadow. The code receives that delta using the on('delta') event. AWS IoT will

only place the lights status in the delta if they are different than what was previously

reported. If the code detects that the lights were modified, it will change its lights

status to what is requested in the delta. Finally, the code will report back to AWS

IoT using the reported status that it just turned on its lights. Feel free to look at the

code to get a deeper understanding.

13. Back in the AWS IoT MQTT Client in the AWS Management Console,

you will see that the $aws/things/car1/shadow/update/documents topic

received an update as there is a green dot next to its name (it's the first one in

the list). Click on that topic.

14. You will see that 2 messages have been received. Let's look at the

oldest message at the bottom of the list. This message was generated when

you published your desired state to the topic. It should look like the following:

Lab no 07 part1 –AWS IoT Shadows

 Page 8 of 14

{

 "previous": {

 "state": {

 "reported": {

 "lights": false

 }

 },

 "metadata": {

 "reported": {

 "lights": {

 "timestamp": 1552943011

 }

 }

 },

 "version": 2

 },

 "current": {

 "state": {

 "desired": {

 "lights": true

 },

 "reported": {

 "lights": false

 }

 },

 "metadata": {

 "desired": {

 "lights": {

 "timestamp": 1552943018

 }

 },

 "reported": {

 "lights": {

 "timestamp": 1552943011

 }

 }

 },

 "version": 3

 },

 "timestamp": 1552943018

}

The JSON document will contain two primary nodes: previous and current.

The previous node contains the content of the full shadow document before the

update was performed while current contains the full shadow document after the

Lab no 07 part1 –AWS IoT Shadows

 Page 9 of 14

update is successfully applied. The previous state shows that the

previously reported state has the lights set to false. The current state represents

the time you sent an update with a new desired state. You can see that

the desired and reported state aren't the same. A delta state has been generated,

but you can't see it here. You will look at it next.

15. Click on the second topic that you subscribed

to: $aws/things/car1/shadow/update/delta. If you put your cursor on top of

the topic's name, you will see its full name or you could click on the topic and

it will be mentioned as the title.

16. You can see that a message was published to that delta topic. However,

you never did that and neither did the code. That is done automatically by

AWS IoT. It should look like the following:

{

 "version": 3,

 "timestamp": 1552943869,

 "state": {

 "lights": true

 },

 "metadata": {

 "lights": {

 "timestamp": 1552943869

 }

 }

}

You can see that the state is set directly to what is different between

the desired and the reported states. In this case, lights is set to true. The code,

which is subscribed to the delta topic, updated its status based on that delta and

published a new reported state. You will see that next.

17. Click on the first topic that you subscribed

to: $aws/things/car1/shadow/update/documents. This time take a look at

the other message: the newest at the top of the list. It should look like the

following:

{

 "previous": {

 "state": {

 "desired": {

Lab no 07 part1 –AWS IoT Shadows

 Page 10 of 14

 "lights": true

 },

 "reported": {

 "lights": false

 }

 },

 "metadata": {

 "desired": {

 "lights": {

 "timestamp": 1552943018

 }

 },

 "reported": {

 "lights": {

 "timestamp": 1552943011

 }

 }

 },

 "version": 3

 },

 "current": {

 "state": {

 "reported": {

 "lights": true

 }

 },

 "metadata": {

 "reported": {

 "lights": {

 "timestamp": 1552943018

 }

 }

 },

 "version": 4

 },

 "timestamp": 1552943018,

 "clientToken": "car1-1"

}

The previous node shows the same state as the current node of the previous

document which is expected with the differences between

the desired and reported states. The current node has now been updated with

a reported state set to what the previously desired state was at: lights set to true.

That is normal as that is what you said you wanted by publishing that desired state

in the beginning. The car1 code reported that new state once it received the delta.

Lab no 07 part1 –AWS IoT Shadows

 Page 11 of 14

3. Change the status of the lights while car1 is disconnected

In this section, you will update the light status of car1 via the AWS IoT MQTT Client

while car1 is offline. To do this, you will stop car1, update the light status and start

car1 again to see what happens.

1. In the Cloud9 terminal, press Ctrl-c to stop car1.

2. Back to the AWS IoT MQTT Client console, click the Publish to a topic blue

link.

3. Under the Publish section, in the white text

box $aws/things/car1/shadow/update should still be there. If not, enter it.

4. Under the previous step's text box, you should see a JSON payload, replace

the entire content with the following. This says that you have a desire for the

lights to set to false by setting the state to desired and passing all the

attributes that you want to set.

{

 "state": {

 "desired": {

 "lights": false

 }

 }

}

5. Click Publish to Topic. What happens is that the desired state is sent to

AWS IoT which then generates a delta state between the

originally reported state from the previous section and the new desired state

that you just sent.

6. You can look at both documents and delta topics that you subscribed to in the

previous section where you will see a similar pattern. However, there will only

be 1 new message in the documents Topic. The reason is because the device

is currently offline. So, it can't act on the delta that was just published.

7. Open a new AWS Management Console tab as you want to conserve the

MQTT Client you are currently in. You can do that by copying the URL of this

tab, opening a new tab, and pasting that URL in. You won't have to login

again.

Lab no 07 part1 –AWS IoT Shadows

 Page 12 of 14

8. Click Services, and then click IoT Core to go to the IoT console.

9. Expand Manage and click Things in the left menu.

10. Click on car1.

11. Click on Shadows.

12. Click on Classic Shadow.

13. You should see a Shadow state like the following:

{

 "desired": {

 "lights": false

 },

 "reported": {

 "lights": true

 },

 "delta": {

 "lights": false

 }

}

As you can see, the Shadow has a desired state set to what you just published. It

has a reported state set to what the last reported state was. And it has

a delta state showing the difference between those two states.

14. You will now start car1 again. The first step that the car1's code takes

when it wakes up is to issue a get request. On the response to that request, it

looks for a delta state. If there is a delta, it acts on it by setting its lights to that

state. Thus, it doesn't need to go back for every single message that were

sent. In fact, those messages aren't even there anymore. We know there was

only one, but what if you modified the lights 5 more times while it was offline?

It only needs to look at the delta.

15. In the Cloud9 terminal, start car1 again by entering the following

command:

node exercise-2.2.js

Lab no 07 part1 –AWS IoT Shadows

 Page 13 of 14

You should see the following output:

The car1 has been registered.

Sending initial get to set the light state.

Received the initial get data.

Delta found on initial get setting lights to that state and reporting.

My lights are off

 __/ __

| _ _ `-.

'-(_)---(_)--'

It looks very similar to the first time you started car1, however this time the

line Delta found on initial get setting lights to that state and reporting is present.

This indicates that while looking at the initial get data, it found a delta state and

acted on it.

16. Feel free to look at the code and to play with the status of the lights by

publishing more updates on the update Shadow Topic. You can also do the

same with the car2.

Lab no 07 part1 –AWS IoT Shadows

 Page 14 of 14

4. Delete the resources created in this exercise

In this section, you will remove all the different resources created as part of this exercise that
won't be required for the other exercises.

The resources from lab 6 part 1 will still be there and should remain in place. If you would like to
remove the resources from lab 6 part 1, refer to that exercise.

4.1 Stop car1

Although car1 doesn't send any messages, it is connected to the IoT service and should be
disconnected to prevent charges.

1. Press Ctrl-c in the Cloud9 terminal to stop car1 from interacting with AWS IoT.

4.2 Stop the MQTT Client

1. Navigate away from the AWS IoT MQTT Client page to disconnect from the client.

4.3 Stop the Cloud9 environment

The Cloud9 environment will automatically shut down after 30 minutes of inactivity. For your
Cloud9 environment to be considered inactive, you need to close the browser tab. All the settings
will be saved.

1. Close the browser tab where your environment was running.

As the operating system is Amazon Linux, you are billed by the second during those 30
minutes of inactivity. If you are under the free tier, this would be covered. If you are no longer
under the free tier, you can force a stop of the EC2 instance that runs your Cloud9
environment. This will have no effect on the future exercises.

1. In the AWS Management Console, click Services, and then click EC2 to open the EC2
console.

2. Click Instances on the left menu.

3. Select the EC2 Instance that has a name that starts with aws-cloud9.

4. Click Actions > Instance State > Stop instance

Note:

 Labs are from Course: AWS IoT: Developing and Deploying an Internet of Things

 https://www.edx.org/course/aws-iot-developing-and-deploying-an-internet-of-th

https://www.edx.org/course/aws-iot-developing-and-deploying-an-internet-of-th

